Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Arch Microbiol ; 206(6): 254, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727835

RESUMEN

Phthalic acid esters (PAEs) are human made chemicals widely used as plasticizers to enhance the flexibility of plastic products. Due to the lack of chemical bonding between phthalates and plastics, these materials can easily enter the environment. Deleterious effects caused by this chemo-pollutant have drawn the attention of the scientific community to remediate them from different ecosystem. In this context, many bacterial strains have been reported across different habitats and Sphingobium yanoikuyae strain P4 is among the few psychrotolerant bacterial species reported to biodegrade simple and complex phthalates. In the present study, biodegradation of three structurally different PAEs viz., diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), and butyl benzyl phthalate (BBP) have been investigated by the strain P4. Quantitative analyses through High-performance liquid chromatography (HPLC) revealed that the bacterium completely degraded 1 g/L of DEP, DIBP, and BBP supplemented individually in minimal media pH 7.0 within 72, 54, and 120 h of incubation, respectively, at 28 °C and under shake culture condition (180 rpm). In addition, the strain could grow in minimal media supplemented individually with up to 3 g/L of DEP and 10.0 g/L of DIBP and BBP at 28 °C and pH 7.0. The strain also could grow in metabolites resulting from biodegradation of DEP, DIBP, and BBP, viz. n-butanol, isobutanol, butyric acid, ethanol, benzyl alcohol, benzoic acid, phthalic acid, and protocatechuic acid. Furthermore, phthalic acid and protocatechuic acid were also detected as degradation pathway metabolites of DEP and DIBP by HPLC, which gave an initial idea about the biodegradation pathway(s) of these phthalates.


Asunto(s)
Biodegradación Ambiental , Ácidos Ftálicos , Sphingomonadaceae , Ácidos Ftálicos/metabolismo , Sphingomonadaceae/metabolismo , Sphingomonadaceae/genética , Dibutil Ftalato/metabolismo , Plastificantes/metabolismo , Cromatografía Líquida de Alta Presión , Hidroxibenzoatos/metabolismo
2.
Emerg Infect Dis ; 30(5): 1060-1062, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666619

RESUMEN

We report a case of Sphingobium yanoikuyae bacteremia in an 89-year-old patient in Japan. No standard antimicrobial regimen has been established for S. yanoikuyae infections. However, ceftriaxone and ceftazidime treatments were effective in this case. Increased antimicrobial susceptibility data are needed to establish appropriate treatments for S. yanoikuyae.


Asunto(s)
Antibacterianos , Bacteriemia , Sphingomonadaceae , Anciano de 80 o más Años , Humanos , Masculino , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Japón , Pruebas de Sensibilidad Microbiana , Sphingomonadaceae/genética , Sphingomonadaceae/aislamiento & purificación , Sphingomonadaceae/efectos de los fármacos
3.
Chem Res Toxicol ; 37(2): 212-215, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38252020

RESUMEN

Microcystin-degrading bacteria first degrade microcystins by microcystinase A (MlrA) to cleave the cyclic structure of microcystins at the Adda-Arg site of microcystin-LR, microcystin-RR, and microcystin-YR, but the cleavage of the other microcystins was not clear. In our study, the microcystin-degrading bacterium Sphingopyxis sp. C-1 as wild type and that of mlrA-disrupting mutant, Sphingopyxis sp. CMS01 were used for microcystins biodegradation. The results showed MlrA degraded microcystin-LA, microcystin-LW, microcystin-LY, microcystin-LF, and nodularin. MlrA could cleave the Adda-L-amino acid site.


Asunto(s)
Microcistinas , Sphingomonadaceae , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Biodegradación Ambiental
4.
Environ Res ; 248: 118336, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295970

RESUMEN

Microcystins (MCs) significantly threaten the ecosystem and public health. Biodegradation has emerged as a promising technology for removing MCs. Many MCs-degrading bacteria have been identified, including an indigenous bacterium Sphingopyxis sp. YF1 that could degrade MC-LR and Adda completely. Herein, we gained insight into the MCs biodegradation mechanisms and evolutionary dynamics of MCs-degrading bacteria, and revealed the toxic risks of the MCs degradation products. The biochemical characteristics and genetic repertoires of strain YF1 were explored. A comparative genomic analysis was performed on strain YF1 and six other MCs-degrading bacteria to investigate their functions. The degradation products were investigated, and the toxicity of the intermediates was analyzed through rigorous theoretical calculation. Strain YF1 might be a novel species that exhibited versatile substrate utilization capabilities. Many common genes and metabolic pathways were identified, shedding light on shared functions and catabolism in the MCs-degrading bacteria. The crucial genes involved in MCs catabolism mechanisms, including mlr and paa gene clusters, were identified successfully. These functional genes might experience horizontal gene transfer events, suggesting the evolutionary dynamics of these MCs-degrading bacteria in ecology. Moreover, the degradation products for MCs and Adda were summarized, and we found most of the intermediates exhibited lower toxicity to different organisms than the parent compound. These findings systematically revealed the MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria. Consequently, this research contributed to the advancement of green biodegradation technology in aquatic ecology, which might protect human health from MCs.


Asunto(s)
Ecosistema , Sphingomonadaceae , Humanos , Microcistinas , Biodegradación Ambiental , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Genómica
5.
Environ Microbiol Rep ; 16(1): e13210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37950419

RESUMEN

The MBES04 strain of Novosphingobium accumulates phenylpropanone monomers as end-products of the etherase system, which specifically and reductively cleaves the ß-O-4 ether bond (a major bond in lignin molecules). However, it does not utilise phenylpropanone monomers as an energy source. Here, we studied the response to the lignin-related perturbation to clarify the physiological significance of its etherase system. Transcriptome analysis revealed two gene clusters, each consisting of four tandemly linked genes, specifically induced by a lignin preparation extracted from hardwood (Eucalyptus globulus) and a ß-O-4-type lignin model biaryl compound, but not by vanillin. The most strongly induced gene was a 2,4'-dihydroxyacetophenone dioxygenase-like protein, which leads to energy production through oxidative degradation. The other cluster was related to multidrug resistance. The former cluster was transcriptionally regulated by a common promoter, where a phenylpropanone monomer acted as one of the effectors responsible for gene induction. These results indicate that the physiological significance of the etherase system of the strain lies in its function as a sensor for lignin fragments. This may be a survival strategy to detect nutrients and gain tolerance to recalcitrant toxic compounds, while the strain preferentially utilises easily degradable aromatic compounds with lower energy demands for catabolism.


Asunto(s)
Hidrocarburos Fluorados , Lignina , Sphingomonadaceae , Lignina/química , Proteínas Bacterianas/genética , Oxidación-Reducción , Éteres/química , Éteres/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo
6.
J Agric Food Chem ; 71(49): 19663-19671, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38038961

RESUMEN

Sphingobium lignivorans SYK-6 can assimilate various lignin-derived aromatic compounds, including a ß-5-type (phenylcoumaran-type) dimer, dehydrodiconiferyl alcohol (DCA). SYK-6 converts DCA to a stilbene-type intermediate via multiple reaction steps and then to vanillin and 5-formylferulic acid (FFA). Here, we first elucidated the catabolic pathway of FFA, which is the only unknown pathway in DCA catabolism. Then, we identified and characterized the enzyme-encoding genes responsible for this pathway. Analysis of the metabolites revealed that FFA was converted to 5-carboxyferulic acid (CFA) through oxidation of the formyl group, followed by conversion to ferulic acid by decarboxylation. A comprehensive analysis of the aldehyde dehydrogenase genes in SYK-6 indicated that NAD+-dependent FerD (SLG_12800) is crucial for the conversion of FFA to CFA. LigW and LigW2, which are 5-carboxyvanillic acid decarboxylases involved in the catabolism of a 5,5-type dimer, were found to be involved in the conversion of CFA to ferulic acid, and LigW2 played a significant role. The ligW2 gene forms an operon with ferD, and their transcription was induced during growth in DCA.


Asunto(s)
Sphingomonadaceae , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Lignina/metabolismo , Oxidación-Reducción , Ácidos Cumáricos/metabolismo
7.
Toxins (Basel) ; 15(8)2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37624251

RESUMEN

Hepatotoxic microcystins (MCs) are produced and released by the harmful bloom-forming cyanobacteria, which severely threaten drinking water safety and human health due to their high toxicity, widespread distribution, and structural stability. The linearized microcystinase (MlrB) further hydrolyses the poisonous linearized MCs produced by the microcystinase-catalysed MCs to form tetrapeptides. Here, the purification and activity of MlrB were investigated. The results showed that the linearized products generated by 12.5 mg/L MC-LR and MC-RR were removed by purified recombinant MlrB at a protein concentration of 1 mg/L within 30 min. The high catalytic activity of MlrB can be obtained via heterologous expression and affinity purification, which lays the foundation for further studies on the properties and mechanism of MCs biodegradation enzymes.


Asunto(s)
Microcistinas , Sphingomonadaceae , Humanos , Sphingomonadaceae/genética , Biodegradación Ambiental , Catálisis , Cromatografía de Afinidad
8.
Ecotoxicol Environ Saf ; 263: 115261, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37459723

RESUMEN

Biodegradation of triphenyl phosphate (TPHP) by Sphingopyxis sp. GY was investigated, and results demonstrated that TPHP could be completely degraded in 36 h with intracellular enzymes playing a leading role. This study, for the first time, systematically explores the effects of the typical brominated flame retardants, organophosphorus flame retardants, and heavy metals on TPHP degradation. Our findings reveal that TCPs, BDE-47, HBCD, Cd and Cu exhibit inhibitory effects on TPHP degradation. The hydrolysis-, hydroxylated-, monoglucosylated-, methylated products and glutathione (GSH) conjugated derivative were identified and new degradation pathway of TPHP mediated by microorganism was proposed. Moreover, toxicity evaluation experiments indicate a significant reduction in toxicity following treatment with Sphingopyxis sp. GY. To evaluate its potential for environmental remediation, we conducted bioaugmentation experiments using Sphingopyxis sp. GY in a TPHP contaminated water-sediment system, which resulted in excellent remediation efficacy. Twelve intermediate products were detected in the water-sediment system, including the observation of the glutathione (GSH) conjugated derivative, monoglucosylated product, (OH)2-DPHP and CH3-O-DPHP for the first time in microorganism-mediated TPHP transformation. We further identify the active microbial members involved in TPHP degradation within the water-sediment system using metagenomic analysis. Notably, most of these members were found to possess genes related to TPHP degradation. These findings highlight the significant reduction of TPHP achieved through beneficial interactions and cooperation established between the introduced Sphingopyxis sp. GY and the indigenous microbial populations stimulated by the introduced bacteria. Thus, our study provides valuable insights into the mechanisms, co-existed pollutants, transformation pathways, and remediation potential associated with TPHP biodegradation, paving the way for future research and applications in environmental remediation strategies.


Asunto(s)
Retardadores de Llama , Sphingomonadaceae , Retardadores de Llama/metabolismo , Organofosfatos/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Glutatión
9.
Environ Pollut ; 328: 121624, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37059172

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants in a number of point source contaminated sites, where they are found embedded in complex mixtures containing different polyaromatic compounds. The application of bioremediation technologies is often constrained by unpredictable end-point concentrations enriched in recalcitrant high molecular weight (HMW)-PAHs. The aim of this study was to elucidate the microbial populations and potential interactions involved in the biodegradation of benz(a)anthracene (BaA) in PAH-contaminated soils. The combination of DNA stable isotope probing (DNA-SIP) and shotgun metagenomics of 13C-labeled DNA identified a member of the recently described genus Immundisolibacter as the key BaA-degrading population. Analysis of the corresponding metagenome assembled genome (MAG) revealed a highly conserved and unique genetic organization in this genus, including novel aromatic ring-hydroxylating dioxygenases (RHD). The influence of other HMW-PAHs on BaA degradation was ascertained in soil microcosms spiked with BaA and fluoranthene (FT), pyrene (PY) or chrysene (CHY) in binary mixtures. The co-occurrence of PAHs resulted in a significant delay in the removal of PAHs that were more resistant to biodegradation, and this delay was associated with relevant microbial interactions. Members of Immundisolibacter, associated with the biodegradation of BaA and CHY, were outcompeted by Sphingobium and Mycobacterium, triggered by the presence of FT and PY, respectively. Our findings highlight that interacting microbial populations modulate the fate of PAHs during the biodegradation of contaminant mixtures in soils.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Sphingomonadaceae , Hidrocarburos Policíclicos Aromáticos/metabolismo , Peso Molecular , Biodegradación Ambiental , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Benzo(a)Antracenos/metabolismo , Suelo , Contaminantes del Suelo/metabolismo , Microbiología del Suelo
10.
Microb Cell Fact ; 22(1): 64, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016390

RESUMEN

BACKGROUND: Icaritin is an aglycone of flavonoid glycosides from Herba Epimedii. It has good performance in the treatment of hepatocellular carcinoma in clinical trials. However, the natural icaritin content of Herba Epimedii is very low. At present, the icaritin is mainly prepared from flavonoid glycosides by α-L-rhamnosidases and ß-glucosidases in two-step catalysis process. However, one-pot icaritin production required reported enzymes to be immobilized or bifunctional enzymes to hydrolyze substrate with long reaction time, which caused complicated operations and high costs. To improve the production efficiency and reduce costs, we explored α-L-rhamnosidase SPRHA2 and ß-glucosidase PBGL to directly hydrolyze icariin to icaritin in one-pot, and developed the whole-cell catalytic method for efficient icaritin production. RESULTS: The SPRHA2 and PBGL were expressed in Escherichia coli, respectively. One-pot production of icaritin was achieved by co-catalysis of SPRHA2 and PBGL. Moreover, whole-cell catalysis was developed for icariin hydrolysis. The mixture of SPRHA2 cells and PBGL cells transformed 200 g/L icariin into 103.69 g/L icaritin (yield 95.23%) in 4 h in whole-cell catalysis under the optimized reaction conditions. In order to further increase the production efficiency and simplify operations, we also constructed recombinant E. coli strains that co-expressed SPRHA2 and PBGL. Crude icariin extracts were also efficiently hydrolyzed by the whole-cell catalytic system. CONCLUSIONS: Compared to previous reports on icaritin production, in this study, whole-cell catalysis showed higher production efficiency of icaritin. This study provides promising approach for industrial production of icaritin in the future.


Asunto(s)
Industria Farmacéutica , Medicamentos Herbarios Chinos , Flavonoides , Microbiología Industrial , Catálisis , Medicamentos Herbarios Chinos/síntesis química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/metabolismo , Escherichia coli/genética , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , Sphingomonadaceae/enzimología , Sphingomonadaceae/genética , Paenibacillus/enzimología , Paenibacillus/genética , Microbiología Industrial/métodos , Industria Farmacéutica/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Flavonoides/biosíntesis , Hidrólisis
11.
Sci Rep ; 13(1): 1835, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725873

RESUMEN

Livestock breeding activities and pharmaceutical wastes lead to considerable accumulation of steroid hormones and estrogens in wastewaters. Here estrogens act as pro-cancerogenic agents and endocrine disruptors interfering with the sexual development of aquatic animals and having toxic effects in humans. Environmental bacteria play a vital role in estrogens degradation. Their wide reservoir of enzymes, such as ring cleavage dioxygenases (RCDs), can degrade the steroid nucleus, catalyzing the meta-cleavage of A, B or D steroid rings. In this work, 4 extra-diol ring cleavage dioxygenases (ERCDs), PP28735, PP26077, PP00124 and PP00193, were isolated from the marine sphingomonad Novosphingobium sp. PP1Y and characterized. Enzymes kinetic parameters were determined on different synthetic catecholic substrates. Then, the bioconversion of catechol estrogens was evaluated. PP00124 showed to be an efficient catalyst for the degradation of 4-hydroxyestradiol (4-OHE2), a carcinogenic hydroxylated derivate of E2. 4-OHE2 complete cleavage was obtained using PP00124 both in soluble form and in whole recombinant E. coli cells. LC-MS/MS analyses confirmed the generation of a semialdehyde product, through A-ring meta cleavage. To the best of our knowledge, PP00124 is the first characterized enzyme able to directly degrade 4-OHE2 via meta cleavage. Moreover, the complete 4-OHE2 biodegradation using recombinant whole cells highlighted advantages for bioremediation purposes.


Asunto(s)
Biodegradación Ambiental , Dioxigenasas , Estrógenos , Sphingomonadaceae , Humanos , Cromatografía Liquida , Dioxigenasas/genética , Dioxigenasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Estrógenos/metabolismo , Estrógenos de Catecol , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Espectrometría de Masas en Tándem
12.
Appl Environ Microbiol ; 89(1): e0172822, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36622195

RESUMEN

Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) enter the environment from natural sources and anthropogenic activities. To date, microorganisms able to mineralize nitro-PAHs have not been reported. Here, Sphingobium sp. strain JS3065 was isolated by selective enrichment for its ability to grow on 1-nitronaphthalene as the sole carbon, nitrogen, and energy source. Analysis of the complete genome of strain JS3065 indicated that the gene cluster encoding 1-nitronaphthalene catabolism (nin) is located on a plasmid. Based on the genetic and biochemical evidence, the nin genes share an origin with the nag-like genes encoding naphthalene degradation in Ralstonia sp. strain U2. The initial step in degradation of 1-nitronaphthalene is catalyzed by a three-component dioxygenase, NinAaAbAcAd, resulting in formation of 1,2-dihydroxynaphthalene which is also an early intermediate in the naphthalene degradation pathway. Introduction of the ninAaAbAcAd genes into strain U2 enabled its growth on 1-nitronaphthalene. Phylogenic analysis of NinAc suggested that an ancestral 1-nitronaphthalene dioxygenase was an early step in the evolution of nitroarene dioxygenases. Based on bioinformatic analysis and enzyme assays, the subsequent assimilation of 1,2-dihydroxynaphthalene seems to follow the well-established pathway for naphthalene degradation by Ralstonia sp. strain U2. This is the first report of catabolic pathway for 1-nitronaphthalene and is another example of how expanding the substrate range of Rieske type dioxygenase enables bacteria to grow on recalcitrant nitroaromatic compounds. IMPORTANCE Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) have been widely detected in the environment and they are more toxic than their corresponding parent PAHs. Although biodegradation of many PAHs has been extensively described at genetic and biochemical levels, little is known about the microbial degradation of nitro-PAHs. This work reports the isolation of a Sphingobium strain growing on 1-nitronaphthalene and the genetic basis for the catabolic pathway. The pathway evolved from an ancestral naphthalene catabolic pathway by a remarkably small modification in the specificity of the initial dioxygenase. Data presented here not only shed light on the biochemical processes involved in the microbial degradation of globally important nitrated polycyclic aromatic hydrocarbons, but also provide an evolutionary paradigm for how bacteria evolve a novel catabolic pathway with minimal alteration of preexisting pathways for natural organic compounds.


Asunto(s)
Dioxigenasas , Hidrocarburos Policíclicos Aromáticos , Sphingomonadaceae , Naftalenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Biodegradación Ambiental , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo
13.
Appl Environ Microbiol ; 89(1): e0154722, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36519886

RESUMEN

Antibiotic resistance mediated by bacterial enzyme inactivation plays a crucial role in the degradation of antibiotics in the environment. Chloramphenicol (CAP) resistance by enzymatic inactivation comprises nitro reduction, amide bond hydrolysis, and acetylation modification. However, the molecular mechanism of enzymatic oxidation of CAP remains unknown. Here, a novel oxidase gene, cmO, was identified and confirmed biochemically. The encoded CmO oxidase could catalyze the oxidation at the C-1' and C-3' positions of CAP and thiamphenicol (TAP) in Sphingobium sp. strain CAP-1. CmO is highly conserved in members of the family Sphingomonadaceae and shares the highest amino acid similarity of 41.05% with the biochemically identified glucose methanol choline (GMC) oxidoreductases. Molecular docking and site-directed mutagenesis analyses demonstrated that CAP was anchored inside the protein pocket of CmO with the hydrogen bonding of key residues glycine (G) 99, asparagine (N) 518, methionine (M) 474, and tyrosine (Y) 380. CAP sensitivity tests demonstrated that the acetyltransferase and CmO could enable a higher level of resistance to CAP than the amide bond-hydrolyzing esterase and nitroreductase. This study provides a better theoretical basis and a novel diagnostic gene for understanding and assessing the fate and resistance risk of CAP and TAP in the environment. IMPORTANCE Rising levels of antibiotic resistance are undermining ecological and human health as a result of the indiscriminate usage of antibiotics. Various resistance mechanisms have been characterized-for example, genes encoding proteins that degrade antibiotics-and yet, this requires further exploration. In this study, we report a novel gene encoding an oxidase involved in the inactivation of typical amphenicol antibiotics (chloramphenicol and thiamphenicol), and the molecular mechanism is elucidated. The findings provide novel data with which to understand the capabilities of bacteria to tackle antibiotic stress, as well as the complex function of enzymes in the contexts of antibiotic resistance development and antibiotic removal. The reported gene can be further employed as an indicator to monitor amphenicol's fate in the environment, thus benefiting risk assessment in this era of antibiotic resistance.


Asunto(s)
Antibacterianos , Cloranfenicol , Farmacorresistencia Bacteriana , Oxidorreductasas , Sphingomonadaceae , Tianfenicol , Humanos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Cloranfenicol/metabolismo , Cloranfenicol/farmacología , Simulación del Acoplamiento Molecular , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Tianfenicol/metabolismo , Tianfenicol/farmacología , Farmacorresistencia Bacteriana/genética
14.
Water Res ; 229: 119397, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459892

RESUMEN

Microcystins (MCs) are harmful to the ecology and public health. Some bacteria can degrade MCs into Adda, but few can destroy Adda. Adda is the key bioactive moiety of MCs and mainly contributes to hepatotoxicity. We had previously isolated an indigenous novel bacterial strain named Sphingopyxis sp. YF1 that can efficiently degrade MCs and its key bioactive moiety Adda, but the mechanisms remained unknown. Here, the biodegradation mechanisms and pathways of Adda were systematically investigated using multi-omics analysis, mass spectrometry and heterologous expression. The transcriptomic and metabolomic profiles of strain YF1 during Adda degradation were revealed for the first time. Multi-omics analyses suggested that the fatty acid degradation pathway was enriched. Specifically, the expression of genes encoding aminotransferase, beta oxidation (ß-oxidation) enzymes and phenylacetic acid (PAA) degradation enzymes were significantly up-regulated during Adda degradation. These enzymes were further proven to play important roles in the biodegradation of Adda. Simultaneously, some novel potential degradation products of Adda were identified successfully, including 7­methoxy-4,6-dimethyl-8-phenyloca-2,4-dienoic acid (C17H22O3), 2-methyl-3­methoxy-4-phenylbutyric acid (C12H16O3) and phenylacetic acid (PAA, C8H8O2). In summary, the Adda was converted into PAA through aminotransferase and ß-oxidation enzymes, then the PAA was further degraded by PAA degradation enzymes, and finally to CO2 via the tricarboxylic acid cycle. This study comprehensively elucidated the novel MC-LR biodegradation mechanisms, especially the new enzymatic pathway of Adda degradation. These findings provide a new perspective on the applications of microbes in the MCs polluted environment.


Asunto(s)
Sphingomonadaceae , Biodegradación Ambiental , Sphingomonadaceae/genética , Microcistinas/química , Fenilacetatos/metabolismo , Transaminasas/metabolismo
15.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36268862

RESUMEN

A Gram-stain-negative, aerobic, motile, rod-shaped bacterium, designated CMS5P-6T, was isolated from a surface-sterilized bark of Aegiceras corniculatum collected from Guangxi Zhuang Autonomous Region, PR China, and investigated by a polyphasic approach to determine its taxonomic position. Strain CMS5P-6T was found to grow optimally with 0-1 % (w/v) NaCl, at 30 °C and pH 6.0-7.0. Substrate mycelia and aerial mycelia were not formed, and no diffusible pigments were observed on the media tested. Phylogenetic analysis showed that strain CMS5P-6T showed high 16S rRNA gene sequence similarity of 96.7 % to Hephaestia caeni DSM 25527T and Sphingomonas colocasiea CC-MHH0539T. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between strain CMS5P-6T and H. caeni DSM 25527T were 78.0, 21.7 and 70.8 %, respectively. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between strain CMS5P-6T and S. colocasiea JCM 31229T were 74.0, 19.9 and 61.4 %, respectively. Phylogenomic analyses based on genome sequences showed that strain CMS5P-6T and H. caeni DSM 25527T formed a distinct cluster within the family Sphingomonadaceae and far away from S. colocasiea JCM 31229T. The DNA G+C content of strain CMS5P-6T was determined to be 65.6 mol%. The cell-wall peptidoglycan was found to contain meso-diaminopimelic acid as the diagnostic diamino acid and ubiquinone Q-10 was identified as the respiratory lipoquinone. The polar lipids were found to comprise diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, sphingoglycolipid and two unidentified aminolipids, and the major fatty acids were identified as C18 : 1 ω7c, C19 : 0 cycloω8c and C16 : 0. On the basis of phylogenetic, genomic, chemotaxonomic and phenotypic data, strain CMS5P-6T can be concluded to represent a novel species of the genus Hephaestia, for which the name Hephaestia mangrovi sp. nov. is proposed. The type strain is CMS5P-6T (=JCM 33125T=CGMCC 1.13868T).


Asunto(s)
Primulaceae , Sphingomonadaceae , ARN Ribosómico 16S/genética , Composición de Base , Peptidoglicano/química , Ácido Diaminopimélico/química , Filogenia , Fosfatidiletanolaminas , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ubiquinona/química , Cloruro de Sodio , Cardiolipinas , Ácidos Grasos/química , Análisis de Secuencia de ADN , Fosfolípidos/química , China , Primulaceae/microbiología , Sphingomonadaceae/genética , Fosfatidilcolinas , Nucleótidos , Glicoesfingolípidos
16.
Microb Genom ; 8(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36301081

RESUMEN

Bioremediation of metaldehyde from drinking water using metaldehyde-degrading strains has recently emerged as a promising alternative. Whole-genome sequencing was used to obtain full genomes for metaldehyde degraders Acinetobacter calcoaceticus E1 and Sphingobium CMET-H. For the former, the genetic context of the metaldehyde-degrading genes had not been explored, while for the latter, none of the degrading genes themselves had been identified. In A. calcoaceticus E1, IS91 and IS6-family insertion sequences (ISs) were found surrounding the metaldehyde-degrading gene cluster located in plasmid pAME76. This cluster was located in closely-related plasmids and associated to identical ISs in most metaldehyde-degrading ß- and γ-Proteobacteria, indicating horizontal gene transfer (HGT). For Sphingobium CMET-H, sequence analysis suggested a phytanoyl-CoA family oxygenase as a metaldehyde-degrading gene candidate due to its close homology to a previously identified metaldehyde-degrading gene known as mahX. Heterologous gene expression in Escherichia coli alongside degradation tests verified its functional significance and the degrading gene homolog was henceforth called mahS. It was found that mahS is hosted within the conjugative plasmid pSM1 and its genetic context suggested a crossover between the metaldehyde and acetoin degradation pathways. Here, specific replicons and ISs responsible for maintaining and dispersing metaldehyde-degrading genes in α, ß and γ-Proteobacteria through HGT were identified and described. In addition, a homologous gene implicated in the first step of metaldehyde utilisation in an α-Proteobacteria was uncovered. Insights into specific steps of this possible degradation pathway are provided.


Asunto(s)
Proteobacteria , Sphingomonadaceae , Proteobacteria/genética , Transferencia de Gen Horizontal , Plásmidos/genética , Elementos Transponibles de ADN/genética , Sphingomonadaceae/genética , Escherichia coli/genética
17.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36142771

RESUMEN

A microcystin-degrading bacterial strain, Blastomonas fulva T2, was isolated from the culture of a microalgae Microcystis. The strain B. fulva T2 is Gram-stain-negative, non-motile, aerobic, non-spore-forming and phototrophic. The cells of B. fulva T2 are able to grow in ranges of temperature from 15 to 37 °C, with a pH of 6 to 8 and a salinity of 0 to 1% NaCl. Here, we sequenced the complete genome of B. fulva T2, aiming to better understand the evolutionary biology and the function of the genus Blastomonas at the molecular level. The complete genome of B. fulva T2 contained a circular chromosome (3,977,381 bp) with 64.3% GC content and a sizable plasmid (145.829 bp) with 60.7% GC content which comprises about 3.5% of the total genetic content. A total of 3842 coding genes, including 46 tRNAs and 6 rRNAs, were predicted in the genome. The genome contains genes for glycolysis, citric acid cycle, Entner-Doudoroff pathways, photoreaction center and bacteriochlorophylla synthesis. A 7.9 K gene cluster containing mlrA, mlrB, mlrC and mlrD1,2,3,4 of microcystin-degrading enzymes was identified. Notably, eight different efflux pumps categorized into RND, ABC and MFS types have been identified in the genome of strain T2. Our findings should provide new insights of the alternative reaction pathway as well as the enzymes which mediated the degradation of microcystin by bacteria, as well as the evolution, architectures, chemical mechanisms and physiological roles of the new bacterial multidrug efflux system.


Asunto(s)
Microcistinas , Sphingomonadaceae , Genómica , Microcistinas/genética , Cloruro de Sodio/metabolismo , Sphingomonadaceae/genética
18.
Toxins (Basel) ; 14(9)2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36136540

RESUMEN

Cyanobacterial hepatotoxins, including microcystins (MCs) and nodularins (NODs), are widely produced, distributed and extremely hazardous to human beings and the environment. However, the catalytic mechanism of microcystinase for biodegrading cyanobacterial hepatotoxins is not completely understood yet. The first microcystinase (MlrA) catalyzes the ring opening of cyclic hepatotoxins, while being further hydrolyzed by the third microcystinase (MlrC). Based on the homology modeling, we postulated that MlrC of Sphingopyxis sp. USTB-05 was a Zn2+-dependent metalloprotease including five active sites: Glu56, His150, Asp184, His186 and His208. Here, the active recombinant MlrC and five site-directed mutants were successfully obtained with heterologous expression and then purified for investigating the activity. The results indicated that the purified recombinant MlrC had high activity to catalyze linearized hepatotoxins. Combined with the biodegradation of linearized NOD by MlrC and its mutants, a complete enzymatic mechanism for linearized hepatotoxin biodegradation by MlrC was revealed.


Asunto(s)
Cianobacterias , Sphingomonadaceae , Biodegradación Ambiental , Cianobacterias/genética , Cianobacterias/metabolismo , Humanos , Microcistinas/metabolismo , Péptidos Cíclicos/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo
19.
BMC Genomics ; 23(1): 508, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831788

RESUMEN

BACKGROUND: The genus Sphingobium within the class Alpha-proteobacteria contains a small number of plant-growth promoting rhizobacteria (PGPR), although it is mostly comprised of organisms that play an important role in biodegradation and bioremediation in sediments and sandy soils. A Sphingobium sp. isolate was obtained from the rhizosphere of the beachgrass Ammophila breviligulata with a variety of plant growth-promoting properties and designated as Sphingobium sp. strain AEW4. RESULTS: Analysis of the 16S rRNA gene as well as full genome nucleotide and amino acid identities revealed that this isolate is most similar to Sphingobium xenophagum and Sphingobium hydrophobicum. Comparative genomics analyses indicate that the genome of strain AEW4 contains unique features that explain its relationship with a plant host as a PGPR, including pathways involved in monosaccharide utilization, fermentation pathways, iron sequestration, and resistance to osmotic stress. Many of these unique features are not broadly distributed across the genus. In addition, pathways involved in the metabolism of salicylate and catechol, phenyl acetate degradation, and DNA repair were also identified in this organism but not in most closely related organisms. CONCLUSION: The genome of Sphingobium sp. strain AEW4 contains a number of distinctive features that are crucial to explain its role as a plant-growth promoting rhizobacterium, and comparative genomics analyses support its classification as a relevant Sphingobium strain involved in plant growth promotion of beachgrass and other plants.


Asunto(s)
Rizosfera , Sphingomonadaceae , ADN Bacteriano/genética , Genómica , Filogenia , Plantas/genética , Poaceae/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo , Sphingomonadaceae/genética
20.
Toxins (Basel) ; 14(5)2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35622580

RESUMEN

Sphingopyxis sp. USTB-05, which we previously identified and examined, is a well-known bacterial strain for biodegrading cyanobacterial hepatotoxins of both nodularins (NODs) and microcystins (MCs). Although the pathways for biodegrading the different types of [D-Asp1] NOD, MC-YR, MC-LR and MC-RR by Sphingopyxis sp. USTB-05 were suggested, and several biodegradation genes were successfully cloned and expressed, the comprehensive genomic analysis of Sphingopyxis sp. USTB-05 was not reported. Here, based on second and third generation sequencing technology, we analyzed the whole genome of Sphingopyxis sp. USTB-05, which is 4,679,489 bp and contains 4,312 protein coding genes. There are 88 protein-coding genes related to the NODs and MCs biodegradation, of which 16 genes (bioA, hmgL, hypdh, speE, nspC, phy, spuC, murD, glsA, ansA, ocd, crnA, ald, gdhA, murC and murI) are unique. These genes for the transformation of phenylacetic acid CoA (PA-CoA) to CO2 were also found in Sphingopyxis sp. USTB-05. This study expands the understanding of the pathway for complete biodegradation of cyanobacterial hepatotoxins by Sphingopyxis sp. USTB-05.


Asunto(s)
Cianobacterias , Sphingomonadaceae , Biodegradación Ambiental , Coenzima A/metabolismo , Cianobacterias/genética , Genómica , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...